Art and Sam Integration

General Larsoft Meeting
Oct. 2, 2013

H. Greenlee

Introduction

e The last time I talked about this topic in a larsoft meeting was the
May 8, 2013 general larsoft meeting (talk in redmine and indico).

- In this talk, I will summarize what I said then, and emphasize what
has changed, and what progress has been made.

Data Handling Overview

User interface SAM

Dataset Qeflnltlons Database Projects
File queries File delivery

N .

Snapshots

SAM
Client

File
SAM Front End SAM Back .End Transfer
" (SAM Server) (SAM Station) Service
SAM
Cache

Disk

Sam Clients

All sam clients have in common that they send requests to the
samweb http server (http://samweb.tnal.gov:8480/sam/uboone/api)

Samweb (setup sam_web_client).

- Line mode client (samweb -e uboone <subcommand> ...).

- Python client (import samweb_cli).

Ifdh client tools (setup ifdhc).

- Line mode client (ifdh <subcommand>).
- Python client (import 1fdh).
- C++ client (class ifdh, not art-specific).

Art client (setup ifdh_art).

- Wraps ifdhc c++ sam client as art service (IFDH service), and provides

sam-capable instances of file delivery and file transfer services.
4

Art + Sam Use Cases

e Sam output (generate sam metadata).

- This use case does not actually require sending requests to the sam
server. You just have to know what metadata you want to associate
with each output file.

— This use case does not include declaring files to sam or uploading
files to enstore. These things are optional and external to art
program.

e Sam input.

- This use case requires that the art program send “fetch next file” and
“release file” type requests to the sam server.

- Other communication with the server to initialize and deinitialize
sam project 1s required, but 1s external to art program.

Sam Output Art Services and Modules

e FileCatalogMetadata service (art).
- Defines basic metadata.

e RootOutput module (art).

- Defines basic metadata.

« FileCatalogMetadataExtras service (larsoft/Utilities).

- Does stuff that art should do, but doesn’t.

e Arbitrary per-job metaedata (name, value).
e Standard sam per-file metadata.
- First event, last event, number of events.
- Time stamps.
- Run number, subrun number.
- Parent files.

e Copying arbitrary metadata from input file to output file.

* Generating unique output file names from a template.

SAM Input Art Services and Modules

Cataloglnterface service (art). Pure virtual class. Derived classes:

- TrivialFileDelivery service (art). Supports files and file lists.
- IFCataloglnterface service (ifdh_art). Supports sam/ifdh.
FileTransfer service (art). Pure virtual class. Derived classes:
- TrivialFileTransfer service (art). Supports files ans file lists.
- IFFileTransfer service (ifdh_art). Supports sam/ifdh.
IFDH service (ifdh_art). Full C++ samweb client.

RootInput module.

IFDH_ART

Sam input support mostly provided by art services that live in ups
product 1fdh_art.

All of the ifdh_art art services mentioned on the previous slide
work, can be used today.

Currently, you need to setup ifdh_art by hand.
- setup ifdh art vl 2 1 -g debug:e2:nu
Above setup should be included 1n standard larsoft setup.

- Doesn’t need to wait for larsoft reconfiguration.

Configuring Sam Services and Modules

e Sam input and sam output services and modules are completely
independent. You can use sam input and sam output separately or
together.

e In general, there 1s no reason to interact with sam services in user
code. You just need to adjust your fcl job configuration to enable
sam 1nput and output.

Example Sam Output Job FCL File

services:
{
FileCatalogMetadata:
{
applicationFamily: "art",
applicationvVersion: "S2013.06.25",
fileType: "mc"
}
user:
{
FileCatalogMetadataExtras:
{
Metadata: ["group", "uboone",
"fileFormat", "root",
"fclName", "standard reco uboone.fcl",
"fclversion", "v1 5"],
GeneratePerFileMetadata: true
CopyMetadataAttributes: ["fileType", "runType"]
}
}
}
outputs:
{
outl:
{
module type: RootOutput
fileName: "standard reco uboone.root"
dataTier: "reconstructed"
}
}

10

Sam Input: Project Life Cycle

1) Generate unique project name.

e Can be done in submit script. Name can be anything. There is a samweb helper command..
2) Start project.

e Can be done in various places. I prefer having a separate batch job.
3) Start consumer process.

* Should be done in batch worker script, before starting art program.

e There can be many workers, and many consumer processes, in a sam project.

4) File loop.

a) Get location (ur1) of next file. :
b) Copy file to scratch disk. . These steps take place
¢) Process file. . 1nside the art program.

d) Release file.

e) Delete file from scratch disk.

5) Stop project.

e Should be separate batch job. 1

Example Sam Input Job FCL File

services:

{

user:

{
IFDH:

{
IFDH BASE URI: “http://samweb.fnal.gov:8480/sam/uboone/api”

}

CatalogInterface:

{

} \
FileTransfer: \
{ \
service provider: “IFFileTransfer” \
— \ .
, . Project url and

\ .
} ¢ consumer process id

source: - are Only knOWn on

module_type: RootInput, batch Worker
fileNames: [1“1673”}]

y o et

12

http://samweb.fnal.gov:8480/sam/uboone/api
http://samweb.fnal.gov:8480/sam/

Worker Level Configuration

e The project url and consumer process id fcl parameters must be set
inside the batch worker.

- There are command line overrides, but they are buggy (or featury) in
the current version of art.

- I prefer to set all sam fcl parameters in the fcl file. Easiest way to do
this 1s to make a wrapper fcl file. Example:

#include “myjob.fcl”

services.user.CatalogInterface.webURI: “http://samweb.fnal.gov:8480/sam/..."
source.fileNames: [“2932"]

13

http://samweb.fnal.gov:8480/sam/

Using DAG to Serialize Start and Stop Project
Batch Jobs

I told you three slides ago that starting and stopping the project should be done
in separate batch jobs.

* You can use the DAG (directed acyclic graph) feature of condor/jobsub to
serialize start project, worker, and stop project batch jobs.

Submit jobs using command dagNabbit.py myjob.dag.

- Script dagNabbit.py is included in jobsub_tools (front end for jobsub).
- Example .dag file:

<serial>

jobsub @ -g ... condor_start project.sh ...
jobsub @ -g -N 100 ... condor lar.sh ...
jobsub @ -g ... condor end project.sh ...
</serial>

- Unfortunately, dagNabbit.py 1s broken if your login shell on gpsnO1 1s
(t)csh. Hopefully should be fixed soon...

14

Using SAM Interactively

e Reading files from sam (using art programs or scripts) works on
any node. But there are a couple of gotchas for using sam in an
interactive environment.

- The “scratch disk™ directory used by ifdh is defined by environment
variable TMPDIR. For interactive use, you must define this
environment variable by hand, or you will fill up /var/tmp on the
gpvm nodes.

* In a batch environment, this environment variable 1s defined for you by
the batch system.

- Interactively, use kinit + get-cert to authenticate yourself to the
samweb server for commands requiring authentication.

» In a batch environment, you automatically have the right credentials.

15

Summary

e Reviewed how to generate sam metadata in output files.

- See May 8 talk for more details.

- FileCatalogMetadataExtras has some new features since May 8 talk.

e Sam input support 1n art 1s mainly provided by services that live in
ifdh_art ups product.

- Sam project life cycle.
- Art job configuration.

- How to use dag to submit sam project batch jobs.

16

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

